## Philosophy Lexicon of Arguments | |||

Predicativeness, redicativity, philosophy: concepts are predicative that do not come from the totality to which they refer. They can therefore be used without the danger of circularity. See also circularity, impredicativity, PoincarÃ©. | |||

Author | Item | Excerpt | Meta data |
---|---|---|---|

Books on Amazon: Bertrand Russell |
I 96 predicative functions: f (x) - non-predicative: f(x^): Function as opposed to its values! - Predicative(s): function that is one step higher than its argument. I 109 Class/predicative/totality/Principia Mathematica/Russell: each class can be defined by a predictive function - hence the totality of classes, of which one can sensibly say that a given term belongs to them or not, a legitimate entirety, although the entirety of functions, of which one can say that a given term fulfils them or not, is not a legitimate entirety. I 116 Def predicative function/Principia Mathematica/Russell: notation: j ! (x,y) (predicative function of x and y.) - Def non-predicative/impredicative function/Principia Mathematica/Russell: function as opposed to its values: notation: j ! (x^, y^). - - - E. Picardi Alfred North Whitehead/Bertrand Russell: Principia Mathematica aus "Hauptwerke der Philosophie 20. Jahrhundert" , Eva Picardi u.a. Stuttgart 1992 p. 18 non-predicative properties: E.g. having all the properties of a great commander - predicative: E.g. to be born in Corsica. |
R I B. Russell/A.N. Whitehead Principia Mathematica Frankfurt 1986 R II B. Russell Das ABC der RelativitÃ¤tstheorie Frankfurt 1989 R IV B. Russell Probleme der Philosophie Frankfurt 1967 R VI B. Russell Die Philosophie des logischen Atomismus InEigennamen, U. Wolf (Hg), Frankfurt 1993 R VII B. Russell Wahrheit und Falschheit InWahrheitstheorien, G. Skirbekk (Hg), Frankfurt 1996 |

> Counter arguments against **Russell**

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei

Ed. Martin Schulz, access date 2017-05-26