Dictionary of Arguments

Screenshot Tabelle Begriffe

 
Predicates, philosophy, logic: predicates are symbols that can stand in logical formulas for properties. In fact, not every predicate stands for a property, since it has contradictory predicates, but no contradictory properties. For example, one can think of a predicate "squaround" for "square and round", that is, two properties that exclude each other. One can then truthfully say "Nothing is squaround". There are therefore more predicates than properties. See also round square, scheme characters, quantification, 2nd level logic, predication, attributes, adjectives.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
Danto I 111
Predicates/Locke/Danto: e.g. good, yellow: these expressions are simple, therefore indefinable - E.g. "Horse": composed, definable.
I 116
Basic vocabulary: terms which are not mutually defineable - therefore they are lexically independent.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Loc III
J. Locke
An Essay Concerning Human Understanding

Danto I
A. C. Danto
Connections to the World - The Basic Concepts of Philosophy, New York 1989
German Edition:
Wege zur Welt München 1999

Danto III
Arthur C. Danto
Nietzsche as Philosopher: An Original Study, New York 1965
German Edition:
Nietzsche als Philosoph München 1998

Danto VII
A. C. Danto
The Philosophical Disenfranchisement of Art (Columbia Classics in Philosophy) New York 2005


Send Link
> Counter arguments against Locke

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2018-11-15
Legal Notice   Contact   Data protection declaration