Philosophy Dictionary of Arguments

Home

Screenshot Tabelle Begriffe

 
Natural deduction, logic: is a calculus by Gerhard Gentzen (Gentzen, “Untersuchungen über das logische Schließen“. In Mathematische Zeitschrift Band 39, 1935, pp. 176–210, 405–431), which largely manages without axioms and instead works with introductory and eliminating rules for the operators used. Assumptions that are needed in the course of time can be partly eliminated later. See also axiomatization, axiom systems, axioms, inference.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
I 143
Calculus of natural deduction/Gentzen/Geach: here there are "possible names" (> existence introduction) - but no quantification over them. - GeachVsQuine: he can not treat names any more as "covert descriptions".


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Gea I
P.T. Geach
Logic Matters Oxford 1972


Send Link
> Counter arguments against Geach

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2020-02-23
Legal Notice   Contact   Data protection declaration