Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Modal Operators: modal operators are symbols for expressing possibility and necessity. These operators do not belong to classical logic, but fall into the field of modal logic. Their placement at the beginning or in the course of formulas determines the relative strength of statements that can be obtained from the interpretation of these formulas. See also range, stronger/weaker, modal logic, possible worlds.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
I 205
Modal operator / problem of actuality / Field: Example, it is possible that a distance is twice or half:as big as it actually is - that can not be done by the possibility operator alone. - Incorrect solution: "actuality operator": which is to refer back to the actual world. - Modality: is used by the Relationism to express that double distance is possible, even if there is no matter point - The Substantivalism does not need that.
I 253
Modality / possibility // Physics / Field: a prefixed modal operator would change the content of a physical law. - ((s) which goes beyond the purely logical case p > Mp.)


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Fie I
H. Field
Realism, Mathematics and Modality Oxford New York 1989

Fie II
H. Field
Truth and the Absence of Fact Oxford New York 2001

Fie III
H. Field
Science without numbers Princeton New Jersey 1980


Send Link
> Counter arguments against Field

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-10-22