Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

Set Theory: set theory is the system of rules and axioms, which regulates the formation of sets. The elements are exclusively numbers. Sets contain individual objects, that is, numbers as elements. Furthermore, sets contain sub-sets, that is, again sets of elements. The set of all sub-sets of a set is called the power set. Each set contains the empty set as a subset, but not as an element. The size of sets is called the cardinality. Sets containing the same elements are identical. See also comprehension, comprehension axiom, selection axiom, infinity axiom, couple set axiom, extensionality principle.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Item Summary Meta data

Books on Amazon

Schwarz I 79f
Classical Set Theory: set and element (member) are undefined.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Clarence Irving Lewis
Collected Papers of Clarence Irving Lewis Stanford 1970

David K. Lewis
Die Identität von Körper und Geist Frankfurt 1989

David K. Lewis
Konventionen Berlin 1975

David K. Lewis
Philosophical Papers Bd I New York Oxford 1983

David K. Lewis
Philosophical Papers Bd II New York Oxford 1986

LwCl I
Clarence Irving Lewis
Mind and the World Order: Outline of a Theory of Knowledge (Dover Books on Western Philosophy) 1991

Schw I
W. Schwarz
David Lewis Bielefeld 2005

Send Link
> Counter arguments against Lewis
> Counter arguments in relation to Set Theory

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   P   Q   R   S   T   U   V   W   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
Ed. Martin Schulz, access date 2018-03-18