Philosophy Lexicon of Arguments

Search  
 
Set Theory: set theory is the system of rules and axioms, which regulates the formation of sets. The elements are exclusively numbers. Sets contain individual objects, that is, numbers as elements. Furthermore, sets contain sub-sets, that is, again sets of elements. The set of all sub-sets of a set is called the power set. Each set contains the empty set as a subset, but not as an element. The size of sets is called the cardinality. Sets containing the same elements are identical. See also comprehension, comprehension axiom, selection axiom, infinity axiom, couple set axiom, extensionality principle.
 
Author Item Excerpt Meta data

 
Books on Amazon
II 333
Set Theory / Uniqueness / Continuum / Field: there are many self-consistent sets that conflicts with each other - (Eg in terms of the cardinality of the continuum) - it makes no sense to assume that there is a privileged term of a set, so that the entities that the meet different conditions, all are formed from the entities that satisfy the privileged theory.

Fie I
H. Field
Realism, Mathematics and Modality Oxford New York 1989

Fie II
H. Field
Truth and the Absence of Fact Oxford New York 2001

Fie III
H. Field
Science without numbers Princeton New Jersey 1980


> Counter arguments against Field
> Counter arguments in relation to Set Theory



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-05-24