Philosophy Lexicon of Arguments

 
Sets: a set is a summary of objects relating to a property. In the set theory, conditions are established for the formation of sets. In general, sets of numbers are considered. Everyday objects as elements of sets are special cases and are called primordial elements. Sets are, in contrast to e.g. sequences not ordered, i.e. no order is specified for the consideration of the elements. See also element relation, sub-sets, set theory, axioms.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
IX 219
Set/Quine: the property to be a set only means that Ez(x e z) ((s), there is something that x is a part of) - then Ey x(x e y (Ez(x e z) u Fx)) - since Ez(x e z) x e UJ - even narrower: a n UJ e J - UJ is then the class of all sets - the point is that J e J (if there are extreme classes), so UJ is still the most comprehensive class that exists - the condition of being a set: Ey(z e y).


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003


> Counter arguments against Quine

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-26