## Philosophy Lexicon of Arguments | |||

Sets: a set is a summary of objects relating to a property. In the set theory, conditions are established for the formation of sets. In general, sets of numbers are considered. Everyday objects as elements of sets are special cases and are called primordial elements. Sets are, in contrast to e.g. sequences not ordered, i.e. no order is specified for the consideration of the elements. See also element relation, sub-sets, set theory, axioms. | |||

Author | Item | Excerpt | Meta data |
---|---|---|---|

Books on Amazon |
I 157f Operator / Sets / Field: sets can be obtained from the operator "exactly the same things that are __, __ are" plus predicate functor "{x} I. ..". |
Fie I H. Field Realism, Mathematics and Modality Oxford New York 1989 Fie II H. Field Truth and the Absence of Fact Oxford New York 2001 Fie III H. Field Science without numbers Princeton New Jersey 1980 |

> Counter arguments against **Field**

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei

Ed. Martin Schulz, access date 2017-05-29