Philosophy Lexicon of Arguments

 
Multi-valued logic: a logic that assumes more than the two classical truth values true and false. There are trivalent logics with possibility or indeterminacy as a third value. For tetravalent logics there are e.g. ¼ or ¾ as additional values that introduce a gradation in the rating. In the case of infinite-valued logics, the truth values can be interpreted as probability values.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
I 487
Multi-valued logic/Brandom: Definition designated: the fact that a statement has any truth value at all. Designation indicates what truth is - designated: requires a definition on the assertion - Definition Multi-valued: embedded content - ((s) a particular one of several possible truth values) - interpretation: assigns two types of value: a) whether designated , b) which multi- value - standard situation: it is defined which multi-values are designated - designation value: everything that plays a role for pragmatic significance of free-standing sentences - bottom-up: Designation > formal validity - Basic principle: the substitution never changes with the same multi-value designation.
---
I 488
Multi- values ​​= equivalence classes from logically derivable sentences - Designation = logical validity.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Bra I
R. Brandom
Expressive Vernunft Frankfurt 2000

Bra II
R. Brandom
Begründen und Begreifen Frankfurt 2001


> Counter arguments against Brandom

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-24