Philosophy Lexicon of Arguments

 
Logical constants: logical constants are also called logical particles or connectives, they are e.g. “and”; “or”; “if”; “then”; “not”. The expression constant is used, because the meaning of the logical links cannot change also in the translation into other languages, but always remains. For example, if one was to try to replace "and" with "or" in the case of a translation, mistakes would arise which could be determined, even if the vocabulary of the foreign language is not entirely known.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
II 79
Sheffer stroke/notation/Wittgenstein: makes the internal relation visible. - WittgensteinVsRussell: his writing style does not make clear that p v q follows from p.q.
---
VI 95/96
Logical constants/elementary proposition/WittgensteinVsTractatus/WittgensteinVsWittgenstein/Schulte:
new: priority of a sentence-system compared to single sentences - formerly VsLogical constants - (do not connect any objects, this is still true for Wittgenstein) - but wrong: that the rules have anything to do with the internal structure of sentences. - New: they form part of a broader syntax.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

W II
L. Wittgenstein
Vorlesungen 1930-35 Frankfurt 1989

W III
L. Wittgenstein
Das Blaue Buch - Eine Philosophische Betrachtung Frankfurt 1984

W IV
L. Wittgenstein
Tractatus Logico Philosophicus Frankfurt/M 1960


> Counter arguments against Wittgenstein
> Counter arguments in relation to Logical Constants

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-23