Philosophy Lexicon of Arguments

Search  
 
Empty set: an empty set is a set without an element. Notation ∅ or {}. There is only one empty set, since without an existing element there is no way to specify a specification of the set. The empty set can be specified as such that each element of the empty set is not identical with itself {x x unequal x}. Since there is no such object, the set must be empty. The empty set is not the number zero, but zero indicates the cardinality of the empty set.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.
 
Author Item Excerpt Meta data

 
Books on Amazon
IX 218
Empty set/zero class/Quine: L not equal to 0! (For Frege 0, namely {L}.
---
A propos IX 226 ~
Empty set/zero class/(s): unlike definition gap (e.g. divide continuity through zero) - real gap: a well-defined condition is not met, e.g. primes between 31 and 37: 5 natural numbers do not satisfy the condition, 0 natural numbers fulfill the condition - for an infinite number of rational numbers and real numbers the condition is not defined - universal class/(s) if there is nothing that fulfills the condition it is questionable whether we can talk of a set (because it does not match a term) - the other way around: what is should be the condition for the universal class?


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003


> Counter arguments against Quine



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-06-29