Philosophy Lexicon of Arguments

 
Lambda Calculus, philosophy: The lambda calculus provides a way to avoid problems related to paradoxes, since, unlike the quantification of predicate logic, it does not make any existence assumptions. Where the quantification (Ex)(Fx) is translated colloquially as "There is an x with the property F" (in short "Something is F"), the translation of the corresponding form in the Lambda calculus is "An x, so that...". See also 2nd order logic.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
I 90
Lambda operator / Meixner: "A (b1, ... bn)" is true if and only if b1, bN .. EXEM lo1 ... oN [A (O1 ... oN] - here stands "A (b1,. ..bN)" for any seentence with N different names - lO1 ... ON [A (O1 ... oN]: represents the name of an N-ary (predicative) universal - O1 the placeholder replaces the O1 b1 name wherever it occurs in A (b1, ... bn) - LO1 ... oN .: this prefix indicates that lo1 ... ON [A (O1 ... on] is not a complete expression. but just a name: lO1 ... oN binds all vacancies in [A (O1 ... oN] - the name "LO 1 [O1 is a human being."] corresponds to the characteristic of being human.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Mei I
U. Meixner
Einführung in die Ontologie Darmstadt 2004


> Counter arguments against Meixner

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-23