Dictionary of Arguments

Screenshot Tabelle Begriffe

Conservativity, philosophy, logic: Conservativity is the demand not to introduce a new vocabulary, or to examine, when introducing new vocabulary, which conclusions are legitimate. Firstly, new expressions may occur in premisses, but not in true conclusions. See also introduction, introduction rules, extensions, translation.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Item Summary Meta data
I 4
Conservativity/Field: includes some features of necessary truth without actually ever involving truth - ((s) >preservation of truth, truth transfer.)
I 44
Def Conservativity/Mathematics/Field: means that every internally consistent combination of nominalist statements is also consistent with the mathematics. - If we can also show that mathematics is not indispensible, we have no reason to believe in mathematical entities anymore.
I 58
Def Conservative/Conservativity/Theory/Mathematics/Field: conservative is a mathematical theory that is consistent with every internally consistent physical theory. - This is equivalent to: a mathematical theory is conservative iff for each assertion A about the physical world and each corpus N of such assertions, A does not follow from N + M, if it does not follow from N alone. - ((s) A mathematical theory adds nothing to a physical theory.)
M: mathematical theory
N: nominalistic physical theory.
Def Anti-Realism/Field: (new): an interesting mathematical theory must be conservative, but it must not be true. - Conservative theory:
1) It facilitates inferences
2) It can substantially occur in the premises of the physical theories.
I 59
Point: Conservativity: necessary truth without truth simpliciter. - (i.e. it is has the properties of a necessarily true theory without existing entities.) - Unlike mathematics: science is not conservative. - It must also have non-trivial nominalist consequences.
I 61
Truth does not imply conservativity, nor vice versa.
I 63
The fact that mathematics never leads to an error shows that it is conservative, not that it is true. - From conservativity follows that statement with physical objects are materially equivalent to statements of standard mathematics. - Point: they need not have the same truth value!
I 75
Conservativity: can explain what follows, but not what does not follow.
I 59
Mathematics/Truth/Field: Thesis: good mathematics is not only true, but necessarily true. - N.B.: Conservativity: necessary truth without truth simpliciter.
I 159
Conservative expansion does not apply to ontology.
- - -
Def Conservative/Science/Field: every inference from nominalistic premises on a nominalistic conclusion that can be made with by means of mathematics can also be made without it - with theoretical entities, unlike mathematical entities, there is no conservativity principle - i.e. conclusions that are made with the assumption of theoretical entities cannot be made without them.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Field I
H. Field
Realism, Mathematics and Modality Oxford New York 1989

Field II
H. Field
Truth and the Absence of Fact Oxford New York 2001

Field III
H. Field
Science without numbers Princeton New Jersey 1980

Field IV
Hartry Field
"Realism and Relativism", The Journal of Philosophy, 76 (1982), pp. 553-67
Theories of Truth, Paul Horwich, Aldershot 1994

Send Link
> Counter arguments against Field

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Ed. Martin Schulz, access date 2019-05-22
Legal Notice   Contact   Data protection declaration