Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Classes: identity of classes provided by same elements (extension) - identity of properties by the same predicates (intension).

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

Nelson Goodman on Classes - Dictionary of Arguments

II 64
Classes/Goodman: when are two objects essentially of the same kind? The fact that they both belong to some class is not enough. Because: any pair of objects belongs to some kind of class.
And that both should belong exactly to the same class would be too much to ask for, because two objects never belong to exactly the same classes.
---
III 41
Classification includes preference.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

G IV
N. Goodman
Catherine Z. Elgin
Reconceptions in Philosophy and Other Arts and Sciences, Indianapolis 1988
German Edition:
Revisionen Frankfurt 1989

Goodman I
N. Goodman
Ways of Worldmaking, Indianapolis/Cambridge 1978
German Edition:
Weisen der Welterzeugung Frankfurt 1984

Goodman II
N. Goodman
Fact, Fiction and Forecast, New York 1982
German Edition:
Tatsache Fiktion Voraussage Frankfurt 1988

Goodman III
N. Goodman
Languages of Art. An Approach to a Theory of Symbols, Indianapolis 1976
German Edition:
Sprachen der Kunst Frankfurt 1997


Send Link
> Counter arguments against Goodman
> Counter arguments in relation to Classes

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2021-06-20
Legal Notice   Contact   Data protection declaration