Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

Description: A. Characterization of singular objects or events instead of giving a name. As opposed to names descriptions are not rigid, i.e. they may refer to different objects in different worlds. - B. Linguistic form for attributing predicates according to the perceptions of objects. See also rigidity, theory of descriptions.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Item Summary Meta data
Re III 127f
Improper name/Quine: (= descriptions- only real names allow the substitution that can be found in the indistinguishability of identical - improper: lead to more complex form: E.g. "among the Roman orators there is a major one, and he denounced Catiline that" - E.g. "Just one number counts the planets and it is more than seven"/Russell: here is only 7 a real name - hence these sentences may not be sentences in a conclusion of the principle of indistinguishability of identical - QuineVs:. problem : range: the marks must be eliminated, so that in the new wording no part corresponds with them.
Strobach I 104:
Indistinguishability/Strobach: requires second order logic/HOL/Strobach: typical formula: Leibniz’s Law: "x = y > (F)(Fx ↔ Fy)".

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
Logic Texts
Me I Albert Menne Folgerichtig Denken Darmstadt 1988
HH II Hoyningen-Huene Formale Logik, Stuttgart 1998
Re III Stephen Read Philosophie der Logik Hamburg 1997
Sal IV Wesley C. Salmon Logik Stuttgart 1983
Sai V R.M.Sainsbury Paradoxien Stuttgart 2001
Stro I
N. Strobach
Einführung in die Logik Darmstadt 2005

Send Link

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

> Export as BibTeX Datei
Legal Notice & Contact   Data protection declaration

Ed. Martin Schulz, access date 2018-06-24