Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

Description: A. Characterization of singular objects or events instead of giving a name. As opposed to names descriptions are not rigid, i.e. they may refer to different objects in different worlds. - B. Linguistic form for attributing predicates according to the perceptions of objects. See also rigidity, theory of descriptions.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Item Summary Meta data
II 29
Description/Frege: E.g. the expression: "The capital of the German Empire" represents a proper name and means an object.
Unsaturated: "capital of"
Saturated: - "the German Empire".
Expression of a function: "The capital of x" - ((s) Russell: propositional function, PF) - Frege: If we take the German Reich as an argument, we obtain Berlin as a function value.
II 54
Description/Subordinate Clause: E.g. The discoverer of the planetary orbits = object ("meaning" (reference): no truth value.
II 82
Description/Name/Frege "the king of this kingdom" does not refer to anything without a specification of time. ->Description ((s) Frege implicitly differentiates descriptions of other singular terms already before Russell).
Stuhlmann-Laeisz II 47
Description/Terminology/Frege: = "compound proper names" (complex names).

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

G. Frege
Die Grundlagen der Arithmetik Stuttgart 1987

G. Frege
Funktion, Begriff, Bedeutung Göttingen 1994

G. Frege
Logische Untersuchungen Göttingen 1993

R. Stuhlmann-Laeisz
Freges Logische Untersuchungen Darmstadt 1995

R. Stuhlmann Laeisz
Philosophische Logik Paderborn 2002

Send Link
> Counter arguments against Frege

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

> Export as BibTeX Datei
Legal Notice & Contact   Data protection declaration

Ed. Martin Schulz, access date 2018-06-22