Philosophy Lexicon of Arguments

Search  
 
Author Item Excerpt Meta data

 
Books on Amazon
IX 217
Induction/Quine: problem: because of the deceptive infinity/finity: problem of uniqueness of subtraction: it is only then clear if a natural number n is proved to be L, because no class has enough elements (namely n) to be candidate for an element of n in question - solution: we must show that any natural number can turn out in this way as L, in short that L e N - problem: can we prove it in NF? Granted, J e J, admitted in J there are infinitely many elements L, {L], {{L}}, ... which are all different, but the proof is not possible.

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003


> Counter arguments against Quine
> Counter arguments in relation to Induction



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-05-26