Philosophy Lexicon of Arguments

 
General validity: within a calculus a formula that is satisfied by any interpretation (variable assignment with expressions for objects) is valid. See also satisfaction, satisfiability, interpretation.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
I 85
not valid / valid / Mates: E.g. Fa - V x Fa. - - (Fa > Ga)> (~Fa > ~ Ga) - - (x) (Ey) Fxy> (Ey) (x) Fxy - here you can specify interpretations, where the statements are false - Valid: j is valid if j is a consequence of the empty set - I 88 trivially true, since L has not got any elements.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Mate I
B. Mates
Elementare Logik Göttingen 1969

Mate II
B. Mates
0226509869 1981


> Counter arguments against Mates

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-24