Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Existential generalization, logic: if an object that can be named, has a certain property, then there is at least one object with this property. See also universal generalization, universal instantiation.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
EMD II 302
Existential Generalization/Wiggins: Modal logicVs Existential generalization: E.g. "Cicero is necessarily a human being" as "N Cicero is a human": if we do not differentiate de re and de dicto here, then (Human(Cicero)) l- English (Ex)(Human x). (I- provable) - because Cicero is a name with secured sense - problem: if Cicero is a human, then there are humans - that is, the context "---" must apply to any possible world(wrong) - then there is something that is necessarily a human - N((x)[(x = Cicero)>(x is a human)]) does not help, if the reason is the secured reference of the name, then the existence follows from the English meaning of the sentence (undesirable) - solution/Wiggins: we should distinguish de re/de dicto from the reach of "necessary" itself.
---
II 303
Existential Generalization/Wiggins : ok for well-defined names - Existential generalization does not apply in any context of the form N (---a---) except for numbers.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Wigg I
D. Wiggins
Essays on Identity and Substance Oxford 2016

EMD II
G. Evans/J. McDowell
Truth and Meaning Oxford 1977

Ev I
G. Evans
The Varieties of Reference (Clarendon Paperbacks) Oxford 1989


Send Link
> Counter arguments against Wiggins

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-11-19