Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Property: what can be ascribed to an object in order to distinguish it from other objects. In philosophy, there is debate about whether properties exist or whether "bare particulars" exist. Expressions for properties are predicates. Not every predicate will refer to a property. See also quantification over properties, 2nd order logic, HOL, completeness.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

Alfred Tarski on Properties - Dictionary of Arguments

Berka I 481
Properties/class/definability/Tarski: a property P of a class is only defined if there is an prop.funct. , that determines E - then you can show that there are other properties of classes: e.g. emptiness, containing only one element, two , etc. - Tarski: Problem: to contain infinitely many elements is not defined.(1)


1. A.Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Commentarii Societatis philosophicae Polonorum. Vol. 1, Lemberg 1935


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Tarski I
A. Tarski
Logic, Semantics, Metamathematics: Papers from 1923-38 Indianapolis 1983

Berka I
Karel Berka
Lothar Kreiser
Logik Texte Berlin 1983


Send Link
> Counter arguments against Tarski
> Counter arguments in relation to Properties ...

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2022-01-25
Legal Notice   Contact   Data protection declaration