Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Dimension: an entity, about which it can be stated, whether a change has taken place or could take place, for example, a displacement of an object along a single axis. In physics, e.g. degrees of freedom.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
I 300f
Three-dimensional/3D/Barrow: that we collect three dimensions is related to the natural laws, which are available in these dimensions - e.g. in rooms with an even number of dimensions waves propagate with more than just the basic velocity. - Then the signals are distorted.
I 302
Only in 3-dimensional space the number of dimensions is equal to the axes about which several rotations are possible - therefore chemical life will hardly have evolved in other spaces.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

B I
John D. Barrow
Warum die Welt mathematisch ist Frankfurt/M. 1996

B II
John D. Barrow
The World Within the World, Oxford/New York 1988
German Edition:
Die Natur der Natur: Wissen an den Grenzen von Raum und Zeit Heidelberg 1993

B III
John D. Barrow
Impossibility. The Limits of Science and the Science of Limits, Oxford/New York 1998
German Edition:
Die Entdeckung des Unmöglichen. Forschung an den Grenzen des Wissens Heidelberg 2001


Send Link
> Counter arguments against Barrow

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2020-08-14
Legal Notice   Contact   Data protection declaration