Philosophy Lexicon of Arguments

de re, philosophy: statements that refer to non-linguistic objects are de re. Here, most authors assume that the ascribed properties are contingent. An exception is essentialism which ascribes certain necessary properties to objects. See also de dicto, necessity de re, contingency, modality, essentialism.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.
Author Item Excerpt Meta data

Books on Amazon
EMD II 293
must de re/Wiggins: thesis to keep (4)(x)(y)[(x = y)> N(y = x)] away from opaque contexts, we must presume must de re: E.g. "the number of planets that is 9, must be greater than 7." - if we apply this on the relation of the identity (lx)(ly)(x = y) , we get necessarily [(lx)(ly)(x = y)] - or the relation which has all r and all s if they are necessarily identical - then variant of (4): (4l)(x)(y)(x = y)> (y has(Iz)[[necessary[(lr)(ls)[s = r]]],[x, z]])) - that needs the contingency theory: then the definition of "is necessarily identical with" depends no longer on the possible world - problem: this might not exist in English.
II 309f
Necessity de re/Wiggins: Problem: E.g. certainly Caesar can be essentially a person, without being essentially in that way so that each sequence with Caesar satisfies in second place: (Human(x2)) - reason: it could be that "human" would not have meant "human".
II 310
General problem: asymmetry, de re - E.g. Kripke: Elizabeth II is necessarily (de re), the daughter of George VI. - But George VI does not necessarily have to have a daughter - E.g. Chisholm: if a table T has a leg L, then T must have L de re as part - E.g. Chisholm: But, to say of the table, that it necessarily consists of substructure and board, is not the same as to say that substructure and board are necessarily parts of the table - and also not that the board is necessarily connected to the substructure - Wiggins: nevertheless, if anything is certain, it is this: [(lx)(ly)[xRy] = [(ly)(lx)[y converse-Rx] - it would be a perverse extreme in the other direction, if one wanted to banish the corresponding biconditional from the truth theory for L - Wiggins: no matter what one thinks of this mereological essentialism, it means that when the legs exist, the rest of the table needs not to exist - solution: more specific description of the essential properties, e.g. trough points in time: (t)(table exists at t)> (leg is part of table at t)) then necessary[(ly)(lw)[(t)((y exists at t) > (w is part of y at t)))], [table, leg].
II 311
That secures the desired asymmetry. Problem: because the existential generalization does not work for the necessity-of-origin doctrine - more general solution: distinction: wrong: [Necessary[(lx) (ly)(x consists of y], [leg, table] - undesirable consequences for existence that would be proven through it - and [Necessary [(lx) (x consists of table], [leg](also wrong) - and finally: [Necessary (ly)(leg consists of y], [table] - (what is right or false depending on whether Kripke or Chisholm is right).

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Wigg I
D. Wiggins
Essays on Identity and Substance Oxford 2016

G. Evans/J. McDowell
Truth and Meaning Oxford 1977

Ev I
G. Evans
The Varieties of Reference (Clarendon Paperbacks) Oxford 1989

> Counter arguments against Wiggins
> Counter arguments in relation to de re

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
Ed. Martin Schulz, access date 2017-06-26