Philosophy Lexicon of Arguments

 
Picture: an object which is in a specified relationship to another object. The objects may originate from different areas such as experience and imagination or from similar areas (lighting and photography) or from the same domain as in the forgery. Mathematics here the required relation is defined a function.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
Danto I 64
Picture/Wittgenstein: a picture shows how the world should look like, if it reflects the world as it is - it shows the conditions that must be satisfied if the world should look like this - ((s)> Cresswell II).
---
I 66
DantoVs: E.g. a picure of the Holy Trinity is still a picture "of" the Trinity, even if God does not exist or if the world does not exist.
"Of": ambiguous: a) Classification: E.g. dog pictures, man pictures - b) representation.
---
Wittgenstein II 104
Picture/Description/Wittgenstein: when describing a picture, the picture is not in every word - the picture corresponds to a sentence.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

W II
L. Wittgenstein
Vorlesungen 1930-35 Frankfurt 1989

W III
L. Wittgenstein
Das Blaue Buch - Eine Philosophische Betrachtung Frankfurt 1984

W IV
L. Wittgenstein
Tractatus Logico Philosophicus Frankfurt/M 1960

Dt I
A. C. Danto
Wege zur Welt München 1999

Dt VII
A. C. Danto
The Philosophical Disenfranchisement of Art (Columbia Classics in Philosophy) New York 2005

W IV
L. Wittgenstein
Tractatus Logico Philosophicus Frankfurt/M 1960


> Counter arguments against Wittgenstein

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-25