Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Biconditional: notation ↔; a statement that is true if the two sides have the same truth value ("true" or "false"). The biconditional (also bisubjunction) is part of the object language. Contrary to that is equivalence (⇔) which belongs to meta language. A biconditional that is always true is an equivalence.
_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

Alfred Tarski on Biconditional - Dictionary of Arguments

Horwich I 124
Biconditional/iff/if and only if/Tarski: no relation between sentences. - No names of sentences emerge.
Contrary to that:
Equivalence relation between sentences: combination of names of sentences. (1)
>Names of sentences
, >Equivalence, >Sentences.


1. A. Tarski, The semantic Conceptions of Truth, Philosophy and Phenomenological Research 4, pp. 341-75

_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Tarski I
A. Tarski
Logic, Semantics, Metamathematics: Papers from 1923-38 Indianapolis 1983

Horwich I
P. Horwich (Ed.)
Theories of Truth Aldershot 1994


Send Link

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2024-02-27
Legal Notice   Contact   Data protection declaration