Philosophy Lexicon of Arguments

Biconditional: notation ↔; a statement that is true if the two sides have the same truth value ("true" or "false"). The biconditional (also bisubjunction) is part of the object language. Contrary to that is equivalence (⇔) which belongs to meta language. A biconditional that is always true is an equivalence.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.
Author Item Excerpt Meta data

Books on Amazon
Hoyningen-Huene II 132
Biconditional/HH: ↔ is a sign of metalogic - logical equivalence is a connective for statements of the object language.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
Logic Texts
Me I Albert Menne Folgerichtig Denken Darmstadt 1988
HH II Hoyningen-Huene Formale Logik, Stuttgart 1998
Re III Stephen Read Philosophie der Logik Hamburg 1997
Sal IV Wesley C. Salmon Logik Stuttgart 1983
Sai V R.M.Sainsbury Paradoxien Stuttgart 2001

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
Ed. Martin Schulz, access date 2017-06-27