Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Domain: In model theory a set of defined objects, for which a model is satisfiable. In logic a set of objects that can be related to statements.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

Logic Texts on Domains - Dictionary of Arguments

Read III 57
Substitution criterion / Vssubstitution criterion / VsBolzano: leads to absurd results: because it declares certain invalid inferences for valid - e.g. "there are at least two things." It is not a matter of logic, that there are at least two things - one can just as well say "there are two things, so there are 76 things" - solution / Tarski: establish a domain - then "there are at least 2 things" might be falsified and is not a logical truth any more.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.
Logic Texts
Me I Albert Menne Folgerichtig Denken Darmstadt 1988
HH II Hoyningen-Huene Formale Logik, Stuttgart 1998
Re III Stephen Read Philosophie der Logik Hamburg 1997
Sal IV Wesley C. Salmon Logic, Englewood Cliffs, New Jersey 1973 - German: Logik Stuttgart 1983
Sai V R.M.Sainsbury Paradoxes, Cambridge/New York/Melbourne 1995 - German: Paradoxien Stuttgart 2001
Re III
St. Read
Thinking About Logic: An Introduction to the Philosophy of Logic. 1995 Oxford University Press
German Edition:
Philosophie der Logik Hamburg 1997


Send Link

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2021-06-20
Legal Notice   Contact   Data protection declaration