Philosophy Lexicon of Arguments

 
Propositional function: open sentence E.g. "Something is green", "x is green" - neither true nor false. A propositional function has an argument position (variable) in which an expression can be inserted. Only after inserting we can decide whether the then complete sentence is true or false.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
IX 178
Propositional function/Principia Mathematica/Theoretical Terms/Russell: name for attributes and relations - "f", "y"... as variables - i.e. that x has the attribute f, that x is to y in the relation y, etc. "fx",y(x,y)", etc. - ^x: to abstract propositional function from statements he just inserted variables with an accent circonflexe into the argument positions - E.g. the attribute to love: "^x loves y" E.g. to be loved: "x loves ^y" (active/passive, without classes!) (>lambda notation/(s) Third Way between Russell and Quinean classes) - Analog in class abstraction: "{x: x loves y}", "{y: x loves y}" - E.g. relation of loving: "{: x loves y}" or "{: x loves}". Abstraction: Problem: in wider contexts sometimes you have no clues as to whether a variable ^x should be understood as if it caused an abstraction of a short or a longer clause - Solution/Russell: Context Definition - statement function must not occur as a value of bound variables that are used to describe it - it must always have too high an order to be a value for such variables - characteristic back and forth between sign and object: the propositional function receives its order from the abstracting expression, and the order of the variables is the order of the values.
---
IX 185
Propositional function/Attribute/Predicate/Theoretical Terms/QuineVsRussell: overlooked the following difference and its analogues:
a) "propositional functions": as attributes (or intensional relations) and
b) proposition functions": as expressions, i.e. predicates (and open statements: E.g. "x is mortal") - accordingly:
a) attributes
b) open statements - solution/Quine: allow an expression of higher order to refer straight away to an attribute or a relation of lower order.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003


> Counter arguments against Quine

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-26