Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
A priori: something that we can know without prior (empirical) investigation. Is the inventory of a priori certainties purely logical? Is a priori knowledge always necessary?

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
Re III 140 f
Original meter: at least at one time, a meter was defined by reference to this original meter. Therefore, we could know a priori that the original meter was one meter long. Nonetheless, it could have been longer or shorter. "The original meter is a meter long" is only contingently true, but a priori recognizable.
The separation between the necessary and the a priori: surprising consequence: every a priori statement is equivalent with a contingent statement! Proof: III 142: equal truth values provide equivalence)
Re III 140
Read: Ambiguous: a priori statements can all be contingent or necessary! - Distinction with rigid designator for truth value: not "the truth value of A" but "the actual truth value of A" - truth is not a property


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
Logic Texts
Me I Albert Menne Folgerichtig Denken Darmstadt 1988
HH II Hoyningen-Huene Formale Logik, Stuttgart 1998
Re III Stephen Read Philosophie der Logik Hamburg 1997
Sal IV Wesley C. Salmon Logik Stuttgart 1983
Sai V R.M.Sainsbury Paradoxien Stuttgart 2001


Send Link
> Counter arguments in relation to A priori

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-10-23