Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Universal quantification: an operator, which indicates that the following expression is a statement about all the objects in the considered domain. Notation "(x)" or "∀x". Ex. E.g. (x) (Fx ∧ Gx) everyday language "All Fs are Gs." .- Antonym

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

Christopher Peacocke on Universal Quantification - Dictionary of Arguments

I 123
inferential / non-inferential / Peacocke: E.g. quantification is the truth of a case of universal quant. non-inferentially, but - The truth of the form of the universal quantification is inferential. Difference: Form of univ. quantification / case of an univ. quantification.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Peacocke I
Chr. R. Peacocke
Sense and Content Oxford 1983

Peacocke II
Christopher Peacocke
"Truth Definitions and Actual Languges"
In
Truth and Meaning, G. Evans/J. McDowell, Oxford 1976


Send Link
> Counter arguments against Peacocke

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2022-06-26
Legal Notice   Contact   Data protection declaration