Psychology Dictionary of ArgumentsHome | |||
| |||
Equivalence class: is obtained from an equivalence relation (reflexive, symmetric, transitive). E.g. from dividing by 3 with remaining 2 2, 5, 8, 11 ... form an equivalence class. E.g. switch positions, e.g. weekdays form equivalence classes modulo 7._____________Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||
Author | Concept | Summary/Quotes | Sources |
---|---|---|---|
Friedrich Waismann on Equivalence Class - Dictionary of Arguments
Wa I 169 Equivalence classes/today: in order to determine the nature of mathematical objects with equivalence classes, called "definition by abstraction". - Then you replace "equal" by "equivalent". >Equivalence, >Mathematical entities, >Definitions, Definability. >Abstraction, >Equality, >Equal sign._____________Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition. |
Waismann I F. Waismann Einführung in das mathematische Denken Darmstadt 1996 Waismann II F. Waismann Logik, Sprache, Philosophie Stuttgart 1976 |