Psychology Dictionary of Arguments

Home Screenshot Tabelle Begriffe

Truth, philosophy: a property of sentences, not a property of utterances because utterances are events. See also truth conditions, truth definition, truth functions, truth predicate, truth table, truth theory, truth value, correspondence theory, coherence theory. The most diverse approaches claim to define or explain truth, or to assert their fundamental indefinability. A. Linguistic-oriented theories presuppose either a match of statements with extracts of the world or a consistency with other statements. See also truth theory, truth definition, theory of meaning, correspondence theory, coherence theory, facts, circumstances, paradoxes, semantics, deflationism, disquotationalism, criteria, evidence. B. Action-oriented truth theories take a future realization of states as the standard, which should be reconciled with an aspired ideal. See also reality, correctness, pragmatism, idealization, ideas. C. Truth-oriented theories of art attribute qualities to works of art under certain circumstances which reveal the future realization of ideal assumed social conditions. See also emphatic truth, fiction, art, works of art.
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Concept Summary/Quotes Sources

David Hilbert on Truth - Dictionary of Arguments

Berka I 395
Truth/absolute truth/Hilbert: axioms and provable propositions are images of the thoughts which make up the method of the previous mathematics, but they are not themselves the absolute truths.
, >Axiom systems, >Axioms/Hilbert.
Def absolute truth/Hilbert: absolute truths are the insights provided by my proof theory with regard to the provability and consistency of the formula systems.
>Proof theory/Hilbert.
Through this program, the truth of the axioms is already shown for our theory of proof(1).
Berka I 486
Relative Truth/correctness in the domain/Tarski: the relative truth plays a much greater role than the (Hilbertian) concept of the absolute truth, which has so far been mentioned:
Definition correct statement in the domain a/Tarski: every statement in domain a is correct, which then (in the usual sense (s)> Putnam would choose spelling with asterisks)) would be true if we limit the scope of the individuals to the given class a.
That is, if we interpret the terms "individual" as "element of class a", "class of individuals" as "subclasses of class a", and so on.
Class Calculation: here you would have to interpret expressions, e.g. of the type "Πxp" as "for each subclass x of class a:p" and, e.g. "Ixy" as "the subclass x of the class a is contained in the subclass y of the class a".
Then we modify definition 22 and 23. As derived terms, we will introduce the concept of the statement, which in an individual domain with k elements is correct, and the assertion which is correct in each individual area(2).
>Truth/Tarski, >Truth Definition/Tarski.

1. D. Hilbert: Die logischen Grundlagen der Mathematik, in: Mathematische Annalen 88 (1923), pp. 151-165.
2. A. Tarski: Der Wahrheitsbegriff in den formalisierten Sprachen, Commentarii Societatis philosophicae Polonorum. Vol 1, Lemberg 1935.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Berka I
Karel Berka
Lothar Kreiser
Logik Texte Berlin 1983

Send Link
> Counter arguments against Hilbert
> Counter arguments in relation to Truth

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z