Psychology Dictionary of Arguments

Home Screenshot Tabelle Begriffe

Induction: Induction in logic is a type of reasoning in which we draw general conclusions from specific observations. It is the opposite of deductive reasoning, where we draw specific conclusions from general premises. See also Deduction, Grue, Generalization, Generality, Conclusions.
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Concept Summary/Quotes Sources

David Hilbert on Induction - Dictionary of Arguments

Berka I 118
Complete Induction/logical form/Hilbert(1):

{P(1) & (x)(y) [P(x) & Seq (x,y) > P(y)]} > (x)P(x)

((s) If a predicate applies to the number 1, and if it applies to any number, also of the next following, then the predicate applies to every number.)

1. D. Hilbert & W. Ackermann: Grundzüge der Theoretischen Logik, Berlin, 6. Aufl. Berlin/Göttingen/Heidelberg 1972, §§ 1,2.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Berka I
Karel Berka
Lothar Kreiser
Logik Texte Berlin 1983

Send Link
> Counter arguments against Hilbert
> Counter arguments in relation to Induction

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z