Economics Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Conclusions: Conclusions in logic are the outcomes or inferences drawn from premises or statements in a logical argument. They represent the final judgments or deductions made based on the provided information.
_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

Charles Sanders Peirce on Conclusions - Dictionary of Arguments

Berka I 30
Conclusion/Peirce: needs in addition to symbol (for truth) and index (both together (for sentence formation) the 3rd character: the icon: because inference consists in the observation that where certain relations exist, some other relations can be found.
>Conclusion
, >Signs, >Icons, >Relations.
These relations must be represented by an icon - e.g. the middle term of the syllogism must actually occur in both premises.(1)
>Syllogisms, >Premises.

1. Ch. S. Peirce, On the algebra of logic. A contribution to the philosophy of notation. American Journal of Mathematics 7 (1885), pp. 180-202 – Neudruck in: Peirce, Ch. S., Collected Papers ed. C. Hartstone/P. Weiss/A. W. Burks, Cambridge/MA 1931-1958, Vol. III, pp. 210-249

_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Peir I
Ch. S. Peirce
Philosophical Writings 2011

Berka I
Karel Berka
Lothar Kreiser
Logik Texte Berlin 1983


Send Link
> Counter arguments against Peirce
> Counter arguments in relation to Conclusions

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z