Economics Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Premises: premises are assumptions within logical conclusions. From them follows a conclusion. Premises are written in a separate line. This makes them different from implications written in one line that contain an antecedent with one or more conditions and a post-sentence. See also syllogisms.
_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

Charles Sanders Peirce on Premises - Dictionary of Arguments

Berka I 41
Premises/logic/Elimination/Peirce: we have the right, to add or to remove any expression from each sentence. - The expressions for various individual items of single known sentences can be multiplied. (1)
((s) multiplication/Boole: "or" - notation: "+".)
>Disjunction
, >Conjunction, >Logic, >Elimination.

1. Ch. S. Peirce, On the algebra of logic. A contribution to the philosophy of notation. American Journal of Mathematics 7 (1885), pp. 180-202 – Neudruck in: Peirce, Ch. S., Collected Papers ed. C. Hartstone/P. Weiss/A. W. Burks, Cambridge/MA 1931-1958, Vol. III, pp. 210-249

_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Peir I
Ch. S. Peirce
Philosophical Writings 2011

Berka I
Karel Berka
Lothar Kreiser
Logik Texte Berlin 1983


Send Link
> Counter arguments against Peirce
> Counter arguments in relation to Premises

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z