Economics Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Bivalence: the division in the evaluation of statements on two possible values. These can be interpreted as "true" and "false", but also can be interpreted differently. In multivalued logic there are three to infinitely many values. See also probabilities.
_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

Charles Sanders Peirce on Bivalence - Dictionary of Arguments

Berka I 31f
Bivalence/Logical Form/Peirce: the fact that the sentence X is either true or false is written as:
(x - f)(w - x) = 0
Execution/(s):
a) x = w : (1 - 0)(1 - 1) = 0
b) x = f: (0 - 0)(0 - 0) = 0.
I 32
Therefore,
(x - f)(w - y) = 0
means that either x is false or y is true.
That is the same as "if x is true, y is true".(1)
>Implication
, >Truth, >Truth values, >Disjunction, >Conjunction, >Logic.

1. Ch. S. Peirce, On the algebra of logic. A contribution to the philosophy of notation. American Journal of Mathematics 7 (1885), pp. 180-202 – Neudruck in: Peirce, Ch. S., Collected Papers ed. C. Hartstone/P. Weiss/A. W. Burks, Cambridge/MA 1931-1958, Vol. III, pp. 210-249

_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Peir I
Ch. S. Peirce
Philosophical Writings 2011

Berka I
Karel Berka
Lothar Kreiser
Logik Texte Berlin 1983


Send Link
> Counter arguments against Peirce
> Counter arguments in relation to Bivalence

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z