Economics Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Proofs: A proof in logic, mathematics is a finite string of symbols, which derives a statement in a system from the axioms of the system together with already proven statements. See also Proof theory, Provability, Syntax, Axioms.
_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

John D. Barrow on Proofs - Dictionary of Arguments

I 44
Kant/Barrow: although we cannot prove that nature is arranged purposefully, we have to arrange the observational data as if it were.
I 88
Proofs/Laws/Barrow: We cannot prove the law of gravity.
>Provability
, >Laws, >Laws of nature, >Gravitation, >Nature.

_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

B I
John D. Barrow
Warum die Welt mathematisch ist Frankfurt/M. 1996

B II
John D. Barrow
The World Within the World, Oxford/New York 1988
German Edition:
Die Natur der Natur: Wissen an den Grenzen von Raum und Zeit Heidelberg 1993

B III
John D. Barrow
Impossibility. The Limits of Science and the Science of Limits, Oxford/New York 1998
German Edition:
Die Entdeckung des Unmöglichen. Forschung an den Grenzen des Wissens Heidelberg 2001


Send Link
> Counter arguments against Barrow
> Counter arguments in relation to Proofs

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z