Economics Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Universal quantification: an operator, which indicates that the following expression is a statement about all the objects in the considered domain. Notation "(x)" or "∀x". Ex. E.g. (x) (Fx ∧ Gx) everyday language "All Fs are Gs." .- Antonym
_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

Maxwell J. Cresswell on Universal Quantification - Dictionary of Arguments

I 162f
Universal quantification/Cresswell: Lewis: E.g. "A donkey always sleeps": quantification by "always" - Cresswell: strong change of logic.
Cf. >Time points/Quine.
I 163
Always/quantification /Lewis: "always" is a universal quantifier.
Unselective quantifier: simply binds all variables in its domain - E.g. always: time points.
I 179
Universal quantification/existential quantification/Cresswell/(s): universal quantification and existential quantificationare equivalent, if there is only one unique object.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Cr I
M. J. Cresswell
Semantical Essays (Possible worlds and their rivals) Dordrecht Boston 1988

Cr II
M. J. Cresswell
Structured Meanings Cambridge Mass. 1984


Send Link
> Counter arguments against Cresswell
> Counter arguments in relation to Universal Quantification

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z